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RELAXATION METHODS APPLIED TO
ENGINEERING PROBLEMS

VIIB. THE ELASTIC STABILITY OF PLANE FRAMEWORKS
AND OF FLAT PLATING

j A Y

A A

__J h By D. G. CurisToPHERSON, L. Fox, J. R. GreEN, F. S. SHAW

;: - AND R. V. SouraweLL, F.R.S.

® : (Recewved 1 September 1941)

A

= O Methods propounded in Part VI of this series, for computing normal modes and the asso-

EO ciated frequencies of vibration, are here developed and extended to investigate ‘critical
5

loadings’, and the associated modes of distortion, for plane frameworks and for flat plating
in circumstances of ‘neutral elastic stability’. The extension to plane frameworks is straight-
forward. For flat plating, on the other hand, it is difficult to conjecture even approximately
the mode associated with the gravest critical loading, and to meet this difficulty a special
technique has been developed. This has proved successful in a case which by orthodox
methods seems quite intractable for the reason that the mode is not expressible in terms of
known functions. :
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INTRODUCTION

1. Problems concerned with elastic stability have not so far received attention in
this series, but the outlines of a relaxation treatment have been given elsewhere (South-
well 1940, Chap. x1*). Elastic strain energy, in the nature of the case, is an essentially
positive quantity; but another contribution to the potential energy comes from the
external forces of a system, and this can have either sign. Consequently the total
potential energy measured from any datum configuration can either increase or decrease
on account of displacement from that configuration. It will have a stationary value in
the datum configuration if this is one of equilibrium; but the stationary value may be
a maximum in relation to some particular type of displacement, and in that event we

/ |\
A B

~ have an example of ‘elastic instability’.

§ 'S In most of the cases which are confronted in engineering, the total potential energy
2 : as thus measured may be expressed in the form

O B=B,~P.B, (1)
Eg where B, and B,, depending respectively on the internal and external forces, are

severally homogeneous quadratic functions of the displacements, and where P defines
the magnitude of the external load system. Both B, and B, are then stationary in the
datum configuration, which accordingly is one of equilibrium; but whereas B, is
essentially positive, P and therefore P. B, may have either sign, consequently the sign

* Some slight alterations have been made in the amplified account given here.
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462 R. V. SOUTHWELL AND OTHERS ON RELAXATION

of B will depend upon the magnitude and sign of P. The equilibrium will be stable only if B
is positive for all displacements: it will be neutral or unstable if for any set of displace-
ments P.%B,, in (1), equals or is greater than B,, so that B is negative.

In the limiting case of neutral elastic stability, when P has attained a particular ‘critical’
value there is one mode of distortion for which B as given by (1) is zero although B,
and B, are non-zero. Clearly, when P has its critical value this mode too is an equi-
librium configuration (Southwell 1913, p. 191), consequently 9B is stationary so that

0B = 0B, —P.0B, = 0 (2)

for all permitted variations of the displacements. We can combine (1) and (2) in the
single statement that P as given by

P=%,/3, (3)

has a value which is stationary in respect of all permitted variations of the displace-
ments. This value is a ‘critical value’. For a system characterized by N degrees of
freedom there are N such values.

2. Now in vibration theory (cf., for example, Southwell 1940, Chap. vir) the natural
frequencies of vibration of a system, i.e. the Eigenwerte of p = 2mn, can be calculated
from the condition that p? as given by '

=BT (4)

has a value which is stationary for all permitted variations of the displacements, B and
T being essentially positive functions representative of the total potential and kinetic
energies. Comparing (3) with (4), we see that when B, is essentially positive (and this
is usually the fact in cases of elastic instability*) the two classes of problem are exactly
analogous. Accordingly any method devised for the solution of vibration problems can
also be applied to the problems of this paper; and from a practical standpoint the latter
are more simple, in that usually only the smallest critical value of P is wanted, whereas
in vibration problems it is often necessary to determine frequencies higher than the
gravest.

In particular, ‘Rayleigh’s principle’ is immediately applicable to problems of elastic
stability, also the relaxation technique which was based on that principle in Part VI
of this series (Pellew & Southwell 1940). For brevity, knowledge of Part VI will be
assumed here. Our purpose is to extend the same basic methods to systems of another
kind.

3. Two classes of problems will be considered. The first relates to the elastic stability
of plane frameworks, consequently is concerned with systems of restricted freedom. The
second relates to the elastic stability of flat plating, i.e. of continuous systems.

Timoshenko (1936, §28) has given a number of references to investigations con-

* Tt is the fact in every problem treated in this paper.
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METHODS APPLIED TO ENGINEERING PROBLEMS 463

cerned with the elastic stability of frameworks assumed to buckle in their own planes;*
but he exemplifies the problem of transverse buckling (i.e. out of the plane of the framework)
by one case only—the possible instability of the upper chord of a low-truss bridge (§ 24) ;
and in this, to facilitate the calculations, he replaces the upper chord by a bar with
hinged ends which is compressed by forces distributed along its length, and the elastic
supports at intermediate (panel) points by an equivalent (continuous) elastic founda-
tion.T Using standard formulae for frameworks (Southwell 1940, Chaps. m and
1v), it is now possible to treat frameworks whether plane or three-dimensional,f and
having either pinned or rigid joints, without excessive labour and without simplifying
assumptions. Here we consider, very briefly, a simplified example akin to Timo-
shenko’s but (in one case) involving rigid joints: namely, a ‘Warren’ truss generally repre-
sentative of a bridge without overhead bracing, but unrepresentative in that (to shorten
the computations) all of its members have been assumed to be similar. This will indicate
the possibilities of a relaxation treatment.

4. Various examples of elastic instability in flat plating have been discussed by
Timoshenko (1936, Chap. vir), mostly on the basis of Rayleigh’s principle (i.e. by energy
methods). From a ‘relaxation’ standpoint these problems have novelty in that usually
the smallest ‘critical loading’ is associated with a mode which is characterized by nodal
lines; consequently it is not easy (as it is, for example, in the strut problem) to make
even a fairly close starting assumption in regard to the form of the gravest mode, and
difficulty may result from ‘regression’ (cf. Southwell 1940, § 252 and footnote). This
difficulty is faced in §§ 228, where it is surmounted in relation to a case of which the
orthodox solution is known: without serious difficulty (though naturally at some cost
in labour) the critical thrust is found with an error of only 0-25 9%,, and still closer
results might be expected if the computations were taken further. In §§29-32 the
methods thus tested are applied to a second example, very much more difficult from
an orthodox standpoint. It is, in fact, hard to see how the mode (figure 12) could be
represented in terms of known functions: for the relaxation method, on the other hand,
this example (though it calls for greater labour) is as straightforward as the first.

In conformity with previous papers of this series, at the outset each example treated
is expressed in ‘non-dimensional’ form. The distribution of the loading is specified,
and our problem is to compute (approximately) the smallest critical value of a numerical
parameter (A) by which the magnitude of the loading is related with the elastic restoring
forces.

* All but the simplest of his illustrative frameworks have pinned joints.

t This simplified treatment Timoshenko attributes to F. S. Jasinsky (1902). H. Muller-Breslau and
A. Ostenfeld seem to have dispensed with the assumption of a continuous elastic foundation to replace
the concentrated elastic supports.

1 Of course, in three-dimensional frameworks all likelihood of instability has usually been eliminated
by design ad hoc.
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464 R. V. SOUTHWELL AND OTHERS ON RELAXATION

I. THE ELASTIC STABILITY OF PLANE FRAMEWORKS
TO DISTORTION OUT OF THEIR PLANES

Statement of the problem

5. A good deal has been written regarding the tendency of a framework to collapse
due to the buckling of one of its members iz its own plane (cf. Timoshenko 1936, §28) ; but
the alternative possibility that it may collapse as a whole, transversely, seems to have
received comparatively little attention. Relaxation methods permit a direct attack on
problems of this kind, which we here exemplify by a triangular (Warren) truss of nine
bays, built up of members all exactly similar, either ‘ pinned’ or with rigid connexions.

This use of similar members in all parts is not, of course, economical of material ; but
a truss more representative of practice would present no difference of principle, and
would entail a longer discussion. Here we are not concerned with practical aspects,
but with the principles of a relaxation treatment; so any simplification is legitimate
which does not imply restriction, and for a like reason we shall (in assumption) replace
the actual stresses of the equilibrium configuration by those resulting from a live load
applied (figure 1) to the two middle joints 4, B of the bottom chord. These assumed
stresses are recorded in figure 1; they entail

thrusts P, 2P, 3P, 4P in the top-chord members,
where P, /3 = W, (5)
W denoting the total load on the truss.
L _‘ ‘

’P22P35F’44/’41P33P72P8P9

P, PP P P, P P, P l P, PP P P,

|
£ ¥ ¥ el ¥ ¥ ¢
| i l
Ficure 1

The dead load (being distributed) will entail less widely varying thrust in the top
chord ; but we shall not be far wide of the mark in assuming that the thrusts are given
by (5) by the time that instability supervenes, since the live load will then be predominant
if a resonable design factor has been employed. We therefore take the problem to be
that of finding, for the load distribution given in figure 1, that value of P for which the
elastic equilibrium becomes unstable.

6. Still further to concentrate on essentials, we neglect the slight distortion of the
truss (out of its plane) which in practice will result from flexure of the deck system, even
when both trusses of the bridge are equally loaded. That is to say, we investigate the elastic
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METHODS APPLIED TO ENGINEERING PROBLEMS 465

stability of a side truss on the understanding that the deck system constrains the bottom-chord
members to remain in the original vertical plane, and the web members to remain tangential to this
plane at their bottom ends, while imposing no constraint on movement of the bottom-chord joints in
this plane.

On this understanding, the diagonal members act as cantilevers built in at their
lower ends and tending to hold the top-chord members in line. Strictly speaking, their
stiffness will depend upon the axial loads which they sustain, and will be greater at the
ends than at the centre of the span. Allowance can be made for this effect (cf., for
example, Southwell 1940, §§ 34-9), but here for simplicity it will be neglected.

Similarly, curvature due to flexure of the top chord will affect the distances between
the top-chord joints; but these again will be neglected for simplicity, and the approach
of two adjacent joints will be taken as dependent solely on their transverse displacements.

The expression for B,

7. Consider, for example, the approach of the joints numbered 4 and 5 in figure 1.
Considerations of symmetry show that the central joint 5 will remain in the central
transverse plane; so, due to transverse displacements w, and wy, the member 4-5,
retaining its original length L, will be rotated through an angle

(to sufficient approximation), (1)

o (W~ W\ Wy~ w
oczsm‘l( 4 5)= hoh

L L
and the consequent approach of joint 4 to joint 5 will be given (again, to sufficient
approximation) by
8, (say) = L(1 —cosa) = }La? = . (w,—u5)?, by (i). (i)
Arguing in the same way, we can show that the approach of joint 3 to joint 5 will be
given by
1
By = oo (g w3+ (g —0,)7, (i)
and so on.
¢
I
5

! 2 3 4 [ 7 8 9
=P =P —p —p P P - Pa—a pw

0% 0% 07 297

Ficure 2. (All sloping members treated as clamped at their lower ends.)

We can now deduce the effects of transverse deflexions upon the potential energy of
the external loads. They will be accompanied by displacements occurring freely in the
plane of the truss, such that the top-chord compressions remain sensibly invariant;
and if (as assumed in § 5) these compressions have the values P, 2P, 3P, 4P, then the
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466 R. V. SOUTHWELL AND OTHERS ON RELAXATION

effects of the primary stresses recorded in figure 1 may be represented by external forces
of magnitude P, acting as indicated in figure 2. These forces will do work in acting
through the ‘approaches’ d,, s, ..., etc., so reducing the potential energy of the external
forces: for example, the force which acts at joint 3 will do work of amount

Py = L (w0, — ) oy w2}, Dy (i), (iv)

and the other forces may be treated similarly. There are (figure 2) eight of these ex-
ternal forces P, acting at the joints 1, 2, 3, 4, 6, 7, 8, 9: allowing for all, we have in the
notation of (1), §1, from (iv) and other equations of similar type,

P
— P, :%z[(wl—wz)z—f—2(w2—w3)2—|—3(w3—w4)2+4(w4—w5)2+4(w5—w6)2
| +3(wg—w;) %+ 2(w; —wg) 24 (wg—wy)*].  (6)

The expression for B,

(1) Pin-jointed top chord
8. A very simple illustration of §§1-2 is provided by that case of our problem in
which the top-chord members are ‘pinned’ both to one
another and to the supporting web members. In it resist-
ance to transverse displacement of a top-chord joint comes
from the web members alone, and it has (on the simpli-
fying assumption of § 6) the same value for every joint.
We may say that a transverse deflexion w is resisted by a

transverse force kw; and then the increase of strain 77 e Y,
energy which results from displacements w,, w,, ..., wg is Ficure 3
given by

0B, = k(wi+wi+...+wj). (7)

9. Means for evaluating £ is provided by the standard formulae of ‘ grid frameworks’
(Southwell 1940, Chap. 111), viz.
For the fixed end :

=~ B
2Zp = 12z§a bbr =

CP—2Bm*>  _  Cm>—2BP
"T—) qu"—_-T—_a

_ C+2B

8
S B _ . B, (8)
—PZp=Zpp=673m, §Zp=—20p=613l, Gpp=pgp=—75—Im;
L L L

For the end which is moved :

,\ B e Cl2++4Bm? Cm?2 4 4Bl?
By =—1275 Bu= s Bim=——p—
(9)
A —_ B —_ — B — — C—4B
PZM:Z[’M:—GZ‘Z"% QZMZZQM:6Z§I, GPp = P9 = — I Im.
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C and B denote respectively the torsional and the relevant flexural rigidity of a com-
ponent member (here assumed to have uniform cross-section). [ and m are direction
cosines of the line drawn from the moved end M to the fixed end F.

The joint A4, in figure 3, undergoes displacements w, p, ¢ which (on our present
assumption that the top-chord members are attached to 4 by ‘pinned’ joints) must
entail a force Z and moments L and M on the ‘constraints’, given by

Z——kw, L=M=0. (10)

Hence, according to the formulae (8) and (9), we have

c—kw=2 =-24£w-—2( B“/g)[)—I—O

L3
B /3 C+12B
0=L=--2(6L2 ) —2( i )p+0,
3C+4B
0=M=0+0— 2( = )

and from these equations we deduce that

C 3\
7=0, (3+p)Lp——3Jsm,
B 18
= 621—;5, nearly, when C/B is small.

(2) Truss having rigid joints in top chord

10. When all of the joints are rigid, formulation of 8, is somewhat more difficult,
but can still be effected with the use of (8) and (9), §9. Using these to find the effects
upon the ‘forces on constraints’ of rotations p,, ¢, and dlsplacements w, of the joint 2
in figure 1, we have

Due to unit displacement w,:

Z, = 12B/L3, Z, = —48B|L3, Z, = 12B/L3,
L, =0, L, = —6«/SB/L2 L,=0,
M, = —6B/12, M, = M, = 6B/L?,
Due to unit rotation p,:
Z, =0, Z, =—6,/3B/L2, Z, =0,
= C/L, L, =—(5C+12B)/2L, L, =C/L,
M =0, M, =0, , M, =0,

Vor. 239. A 57


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

%

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

468 R. V. SOUTHWELL AND OTHERS ON RELAXATION
Due to unit rotation q,:
Z, = 6B/12, Z, =0, Z; =—6B/L?,
L, =0, L, =0, Ly =0,
M, = —2BJL, M, = —(3C+20B)/2L, M; =—2B/L.

Joints 1 and 9 call for special treatment. We have

Due to unit displacement w, :

Z, =—36B|L3, Z, = 12B/L3,
L, =—6,/3B/12, L, =0,
M, = 6B/L2, M, = 6B/L2,
Due to unit displacement p, :
Z, = —6,/3B/I2, - Z, =0,
L, =—3(C+4B)/2L, L, =CJL,
M, =0, M, =0,
Due to unit displacement q, :
Z, = 6B/12, Z, = —6B/L?,
L, =o, L, =0,
M, = —3(C+4B)/2L, M, =—2B|L.

Joint (9) may be treated similarly.

11. Using these results, since all L’s and M’s must vanish as in (10) when account
is taken of the top-chord members as well as of the web members, we can formulate
nine equations starting with

\

3C C
63w+ (6+55) Lo —5 Ly = 0,

63wyt (6:+3 ) Loa— G L(pr-+p5) =0, 12
....... , etc., )
and nine equations starting with
wl—wz——(l +£B) Lg,—1Lg, =0,
(13)

5 C
w—wy—LL(g1+4) —(3+45) La = 0,
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METHODS APPLIED TO ENGINEERING PROBLEMS 469

We can solve these to obtain expressions for every p and ¢ in terms of the w’s, and then,
using the material of § 10 again, we can formulate expressions in w,, w,, ..., w, for the
forces opposed to transverse displacement, i.e. for 0%, /dw,, ..., 08B,/0w,. Hence B, can
be calculated for the truss with rigid joints.

Consequences of symmetry

12. Whether the joints be pinned or free, the symmetry of the truss and of the
load system permits us to separate the modes of distortion into two classes, the first
symmetrical and the second ‘skew-symmetrical’ with respect to the central point 5.
In the first class

Wy = Wy, Wy =Wy, W3=1Wq Wy= W

br=py DP2=bs D3s=10P1  Pi=1De (14 A)
1+99 =92+ 95 = g5 +9; = ¢4+96 = 45 = 0;
and in the second class
W, +wy = wy-+wg = wy+w; = wy+wg = ws =0,
Drtby = potpg = ps+p7; = pstps = b5 =0, (14B)
91=99 92=98 93~ 9 94~ G-

It will be convenient to make the separation into classes at this stage.

Solution for the truss with pinned joinits in top chord

13. Thus the expression (6), which gives 8B, in relation to a truss of which the top-
chord members are pinned, reduces to

—P.B, = T [0~ 2,0 4 By + 4wy —wg)?]  (6A)

in relation to modes of the first class, for which (14A) are satisfied. In relation to the
second class, for which (14 B) are satisfied, it reduces to

P, = [y =) 2, 0g) 4 (g7 4 0] (6B)

Similarly, the expression (7) for B, reduces to
B, = [2(wf+wi+wi+w]) +ui] (7A)
in relation to the first class, and to
B, = k(wi+wi+wi+wi) (7B)

in relation to the second, % being given in both instances by (11) of § 9.
57-2
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470 R. V. SOUTHWELL AND OTHERS ON RELAXATION

14. Substituting in (1) of § 1, we can deduce for any assumed mode (by Rayleigh’s
principle) an estimate of the critical value of P. From (2), replacing ¢8,, é8, by
(0B, /0wy, 0B,/0w,) X w,, and giving £ the values 1, 2, ..., etc. in turn, we can deduce
equations which define the modes of distortion.

For symmetrical modes of distortion the critical thrust P is given by

2(w} 4 wg -+ w3 +wf) 4w}
= (P[RL) [2(w, —wy)?+ 4(wy — w3) 4 6 (w3 —w,)* + 8(wy—w;)?],  (15A)
and w, ..., w; are related by the equations*
2w, = (PJkL) X (2w, —2uw,), 2w, = (PJkL) x (14w, — 6w, — 8w;),
2w, = (P[kL) X (6w,—2w, —4w,),  wy = (P/kL) x —8(w,—w). (16A)
2wy = (P[kL) x (10ws — 4w, — 6w,),
For antisymmetrical modes of distortion the critical thrust is given by
w3+ w3 w10 = (PJRL) [(10, )+ 210, —105)2+ 3(w,— 0,2+ 4], (15B)
and w,, ..., w, are related by
wy = (PIEL) X (w0, —w,), wy = (P/RL) X (515 — 2w, — 3w,), | (16B)
wy = (PJKL) X (3w, —w,—2w,), w, = (PJkL) x (Tio,—3w). |
From a practical standpoint (cf. § 2) interest centres, for either class, in the lowest
admissible value of P/kL and the mode with which it is associated. Which of the two

‘lowest values’ of P/kL, as thus defined, will be the lower can hardly be predicted, but
when found it will be the quantity which is required.

Results for the truss with pinned joints in top chord

15. Tables 1 and 2 record results obtained by D. G. C. and L. F. for the pin-jointed
truss, viz. solutions of (16A) and (16B). The modes numbered (1), (4) and (6) were
obtained both by orthodox and by ‘relaxation’ methods. All can be easily verified.

Figures 4 and 5 exhibit these modes of distortion. They are striking, in that the mode
associated with the smallest critical thrust has the most numerous inflexions. According
to (11) the parameter

P PI? (4 3 )

kL~ 6B[\" 1+C/12B (17)

P and W are related by (5), §5.

* Numerical multipliers have been left uncancelled, to illustrate the reciprocal relations between
coefficients.
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TABLE 1. SYMMETRICAL MODES OF TOP-BOOM DISTORTION
mode
number PJEL Wy = Wy Wy =Wy Wy = 1w, W, = Wg wy
(1) 0-07300, 1 —12:698 67-436 —187-07 262-66
(2) 0-1519, 1 — 5-5821 9:4968 — 1:2864 —7-2570
(3) 0-3458, 1 — 1-8918 —0-6023; 0-8379, 1-3124,
4) 1-2068 1 0-1714 —0-3139 —  0-5507 —0-6142
(5) o) 1 1 1 1 1

TABLE 2. SKEW-SYMMETRICAL MODES OF TOP-BOOM DISTORTION (w; = 0)

A A

OF

paae \

OF

mode
— number PlEL wy=—w, wy,=—wg Wy= —wy Wy = — W
—~ (6) 0-1064 1 —8-395 26-343 —32-996
15 (7N 0-2204 1 —3:56366 22172 2-7002
— (8) 0-5728, 1 — 07458 —0-9677 — 05525
@) (9) 3-1007 1 0-6774, 0-4069, 0-1828,
o ]
95}
S /\\//\\//\ R
&\/ /\\/}
| \/ \\/
1 \ /
~ | .
= |
)
O
O
%)
Ficure 4. Symmetrical modes (pinned joints in top chord).
Mode No. 1. P/kL=0-0730 Mode No. 4. P[kL=1-2068
Mode No. 2. P/kL=0-1519 Mode No. 5. PjkL=c
Mode No. 3. P/kL=0-3458


http://rsta.royalsocietypublishing.org/

L

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

A B

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

472 R. V. SOUTHWELL AND OTHERS ON RELAXATION

— \//\\/\w

}
N /,__._.\ /\
N ~— O

\ o

i
Ficure 5. Anti-symmetrical modes (pinned joints in top chord).

Mode No. 6. PJkL=0-1064 Mode No. 8. PJkL=0-5728
Mode No. 7. P[kL=0-2204 Mode No. 9. P/kL=3-1007

Solution for the truss with rigid joints in top chord

16. The formulation of B, for this case was left unfinished in §11. In symbols the
expressions resulting from (12) and (13) are lengthy, and it will be better to give its
numerical value, at this stage, to the ratio C/B. This value of course depends upon the
cross-sectional shape of the component members. For circular cross-sections (whether
solid or hollow)

B|C = EljuJ = 14 ¢ = 1-3 approximately, for steel. (18)
We have given this value to B/C in the work which follows.

17. The symmetrical and the anti-symmetrical modes can again be separated. For
the first (in which (14 A) are satisfied) equations (12) become

6./3w, =—"T154p, L+0-7692p, L,
6./3w, =—T-923p, L+ 0-7692(p,+p;) L
6. /3wy =—17-923 p, L+ 0-7692(p,+p,) L
6./3w, =—"7923p,L+0-7692(ps+p;) L,
6./3wy = —1T7-923 ps L+ 07692 x 2p, L,

v~

(12A)
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and equations (13) become
7-154q, L+ 2¢,L = 6(w,—w,),
2(¢5+q,)+11:154 ¢,L = 6(“’1“”’3)9}
2(g2+q4) +11:154 g5 L = 6(w,—w,),

2q,L+11-154 q,L = 6(w;—w;).
From (12A) we deduce that

; (13A)

A A

OF

) ¢

SOCIETY

OF

—p, L = 1-46813 w, +0-14390 w, -+ 0-01411 w; -+ 0-00140 1, -+ 0-00014 w;,
—pp L = 0-14390 w, +1-33837 w, -+ 0-13120 w, + 0-01298 w, -+ 0-00126 w,
—psL = 0-01411 w, +0-13120 w,+ 1-33725 w;+0-13232w, + 0-01285 w,,}  (19A)
—py L = 0-00140 w, +0-01298 w,+ 0-13232 w; + 1-34996 w, +0-13106 w,
—ps L = 0-00028 1, + 0-00252 1, -+ 0-02569 w, -+ 0-26212 w, -+ 1-33711 w;,
and from (13A) that
g L= 072050 w, —0-85416 w,+ 0-15861 w;— 0-03040 w, -+ 0-00545 w,
gL = 0-42277 w, +0-05533 w,— 056735 wy+ 0-10874 w,— 0-01949 w;,
g5 L = —0-07829 w, + 0-54559 w,+ 0-00550 wy— 0-57604 w, — 010324 w;, - (20A)
gL = 0014041, —0-09783 w,+ 0-53694 w,+ 0-10329 w, — 0-55644 w;,
gsL = 0. )
TABLE 3. SYMMETRICAL MODES OF TOP-BOOM DISTORTION
mode :
number PI%B W, =W, W=ty Wy =1y, W, =W, wy
(1) 3173 1 —1-8489 —11-0740 —3-9646 32-1543
(2) 4-602 1 —17-6373 —14-1414 15-6751 10-2733
(3) 7-666 1 3-6422 — 1-4569 —1-9479 —2-4743
(4) 13178 1 —0-0466 — 0-2906 —0-4347 —0-4656
(5) o 1 1 1 1 1
‘ Consequently we have, using the material of § 10 again, and writing (for example)
— 0%, /0w, for Z; as explained in § 11,
0B, 0B, 6B )
‘35%279;;=‘L_3[6w1“’2w2+~/3/’1[4_(91+Q2)L]: 1
0B, 0B, 6B
%‘; = a—w; =73 [— 2w, + 8w, —2ws+/3 py L— (95— q,) L],
0B, 0B, 6B
%i:a_w;=*L~3[_2w2+8w3“2w4+~/3P3L—(94‘—42)L]:’ (21)
0B, 7B, 6B
%i = “3;0—; =73 [—2ws+ 8w, —2w5+./3 py L— (g5—g5) L],
0B, 6B
S = 75 (— 4w+ 8w+ /3ps L+29, L).
5 )
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Hence we deduce the expression

A A

OF

)

y
S

OF

[ 9%, —{— —{—wg?§~1 by a known property of quadratic forms,

b
dw,

I

l\'.)ll—'

73 [27 7662 w? + 51-3870 w§+ 54-9556 w} -+ 61-0304 w}

+27-4272 w? — 34-8100 w, w, -+ 9-2232 w, w, — 19372 w, w,
+0-3308 w, w; —49-7788 w, Wy - 12-5536 w, w,— 2-3996 w, w,
— 533692 w,w, + 12-3528 w, 1w, — 509688 w, w;],

pel= 2626 = ~4/-666
el =~24-053 [ =0
/

A
./_' f \‘

pl=-10t5 pl=3794 pls/5439
gl = 0839 qL =556 g,L~4455

T

\\

\\,_,_:’

pl=-0-193  pl= 1177 pl=17.692  pl=-20538 ,;,J: -I7. 463
gil= 4380 g,1=9528 gl =-i2292 g,L=~10929 g

-~

7
4 \\
=7 \\ / S
— \ 7 ~—__

\\ ’;ﬂht\\
- ™ -

pl=-1-969 ple-£799 plei?6 pl=3098 plt5847
qL= 257 gle 1287 gul=27%7 gl=005/ g,l.=0
- é e

N
o /

pl=-1457 pl=-0037 pl=o0444 pl=0686 pl=0743
gl = 0725 gql= 0547 g, L=0097 gl=0077 gll=0
- — el —————

pl=pl « pl =~ pl = pl = ~1.628
7,L-12L -q,t -g‘L -7,L = 0

e T s e -— $ — - e ekt e :

Ficure 6. Symmetrical modes (rigid joints in top chord).

Mode No. 1. PL?/B=3-173 Mode No. 4. PL?/B=13-178
Mode No. 2. PL%/B=4-602 Mode No. 5. PL?/B=
Mode No. 3. PL%/B="7-666

(22A)
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from which, and from B, as given in (6 A) of § 13, an operations table can be deduced
in the usual way.* Then the critical loadings and associated modes can be determined
by the standard methods of Part VI (Pellew & Southwell 1940; cf. also Southwell 1940,
Chaps. vir and vim), with results which are recorded in table 3 and exhibited in figure 6.

18. For antisymmetrical modes (in which the relations (14B) are satisfied) equations

(12) become
6. /3w, =—T-154p, L+0-7692p,L,

6. /3w, =—17923p,L+0-7692 (p,+ps) L,
6./3wy = —7-923 p, L+0-7692 (p,+p,) L,
6. /3w, =—17-923p,L+07692p,L,
and equations (13) become
7154 ¢, L+2q,L = 6(w,—w,),  2(qs5+¢5)+11-154q,L = 6w,
2(q,+¢5) +11-154 ¢, L = 6(w; —w,), 4g,+11-154¢; L = 12w,.+ (13B)
2(¢+¢4) +11154 g3 L = 6(w,—w,),
From (12B) we deduce that
—p L = 146813 w, +0-14389 w,+ 0-01410 w,+0-00137 w,,

— p, L = 014389 w, + 133836 w,+0-13117 w,+0-01273 w,,
—pgL = 0-01410 w, -+ 013117 w, - 133700 w, -+ 0-12980 w,,
—p,L = 0-00137 w; +0-01273 w,+ 0-12980 w, + 1-32427 w,, ]

and from (13B) that
gL = 072049 w,—0-85409 w,--0-15823 w; — 0-02837 w,,)

g,L = 0-42281 w,+0-05509 w,— 0-56600 w, +-0-10149 w,,
g5 L = —0-07851 w, + 054683 w, — 000165 w, — 0-53763 w,, (20B)
g,L=0-01505w,—0-10479 w,-0-57520 w; —0:10313 w,, |
gs L = —0-00540 w, + 0-03757 w,— 0-20628 w;+ 1-11283 w,.)

(12B)

(19B)

. . 0B, B, %, )
Equations (21) hold without change except that now Jw, ~ " w,’ etc., and dw, 0;
in place of (22A) we have
B, = %% [27-7660 w}+51-3716 w}+ 545166 w3+ 48-6700 w?
—34-8056 w; wy+9-2004 w, w;—1-8116 w; w,

* The work leading to this and the other operations table (§ 18) was done by D. G. C. and L. F.
working independently. The symmetrical modes were computed by L. F. and the antisymmetrical
modes by D. G. C. "

Vor. 239. A 58
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and B, is given by (6B) of §13. Consequently we can deduce operations tables, and
complete the solution, as before. The results are recorded in table 4 and exhibited in
figure 7.

TABLE 4. ANTISYMMETRICAL MODES OF TOP-BOOM DISTORTION

mode
number PL2IB  wy=—wy, wy,=—uwy Wy = —w,; Wy = — Wy
(6) 3-3774 1 2-4985 —1-6850 —14-728
(7) 5-6322 1 0-2583 —3-4537 — 1-0729
(8) 9-7879 1 —1-9674 —0-9518 — 0-5119
9) 24-371 1 0-6231 0-3689 0-1632
nIse 4
V4 ~
pl--1784 pl=-3079 pl-5615 / AN All=o
giL=-1262 gl= 008 gl-92097 \ g, L|= /5954
| A
\
’—v—-o—~~
o~ '.,,’J'V \L‘!\ /’ T
AN 7
pl =217 \\ ,/

L = 0685

\

ple=-1455 pl--0023 al-186¢  glleo  Negu?-
gl=-00/6 g1- 2285 7*‘\\ L =888

gl j=-0-477
|
£ - /-—"ﬁ-—-

.._v-._—/ ! \ ,/"
~ P4
pl= 2259 Vst
q.L = 0-6/6 .

ple =120 pl=1548 pl-0822 pli=o0
gl= 2034 > ~ Gl =00 guL=-0302 gl |=-0-442
/
/

, *‘*4\ ' /
/l/' r\‘*—"\ //

~

-
pl= -1563  pl=-1028 : M
7,L= 0-242 71Ls 0-265

pls-0600 pl--0-273 Al
~Se 7,L = 01714 q¢L= 0-145 ol
-

<0
= 0124

-~
r“m._\‘
l =

~

S ———
Ficure 7. Antisymmetrical modes (rigid joints in top chord).

Mode No. 6. PL?/B=3-3774 Mode No. 8. PL%/B= 9-7879
Mode No. 7. PL%/B=5-6322 Mode No. 9. PL?/B=24-371

19. In figures 6 and 7 the slopes at the top-chord joints have been made correct
by a use of the expressions (20A) and (20B) for the ¢’s. Appended to each joint is the
appropriate value of / (the component of rotation about the undistorted top chord),
as deduced from (19A) and (19B).

According to (17), when B/C has the value 1-3,

P . 1PL?
7L i tables 1 and 2 = =5 nearly. (23)
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Consequently the value 3:173, of PL?/B in table 3, compares with
7% 0073004 = 0-511 PL?/B  (approximately) (24)

from table 1, for the corresponding mode. Rigid joints have put up the first critical
loading approximately sixfold.

II. THE ELASTIC STABILITY OF FLAT PLATING
SUBJECTED TO FORCES IN ITS PLANE

Statement of the problem

20. Here, in the notation of Southwell, 1936, Chap. xi, a specified load system
entails, at any point in the plate, two principal thrusts P;, P, of which P, has a direction
inclined at 6 to the axis of x. When plane the plate is in equilibrium, but the equilibrium
may be unstable in the sense that any accidental deflexion w, transverse to the plane
of the plate, will entail collapse; for while w entails an increase in the elastic strain energy,

measured by* - o
B, = 1D f f [ (V2w)2— ){ e ay“’ (%—%) }] dudy, (25)

it also entails a reduction of the potential energy of the external forces, measured by

P.B,— 2”[1)(‘7’”) +P(§Z’) 257 g;”]d dy,

where P, the thrust in the x-direction, = P, cos? §+ P,sin%6,| (26)
P, the thrust in the y-direction, = P, sin?f+ P, cos® 0,
S, the shear due to the stress X, = —§(P, — F,) sin 2.

We can express all three of B, P,, § as multiples of some datum thrust P (for example,
the edge thrust at some particular point of the boundary). Our problem then is to
determine, in the manner of §§ 1-2, the smallest ‘critical’ value of P and the mode with

which this is associated.

21. Using known formulae in the theory of thin plates, we can replace (25) by

B, = 1D [w. Vewdrdy+; §u (N+%H) Z—Z.G}ds,

in which N, G, H are the line intensities of the shear force, bending couple and twisting
couple which act at the edge. Therefore on the assumption that the boundary constraints do
not permit transfer of energy to or from the edge, we have

B, = lDwa. Viwdxdy, simply,
* Cf., for example, Southwell 1936, § 234.

1 Cf., for example, Southwell 1936, §§ 255—6.
58-2
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and it is easy to deduce the ‘non-dimensional’ equation

dw\2 Jw\2 dw dw
14 A 4 Rl 7 el [hdedded ! !
ffw.V wd'dy _/IH{Px(ax,) +Py(3y,) 28 ax'ay'} dx'dy, (27)
in which A= PL%D,
P,P,S = (B, P,S)P,
¥,y = (x9)/L, (28)
' d f 02 32
and V’2 stands for W+W’

so that all quantities are numerical. (w can also be treated as numerical, since its
absolute magnitude is immaterial.) '

Our problem now requires that A as given by (27) shall have a value stationary in
respect of all permitted variations of the displacement w. This will be a ‘critical value’,
and in practice we are concerned to find the lowest critical value which is appropriate
to the specified distribution of £, P,, .

22. The problem can be treated by the methods developed in Part VI of this series,
but a new difficulty is presented in that usually the smallest critical load will be associated
with a mode characterized by nodal lines.* In consequence it is by no means easy (as
it was in Part VI) to guess with even fair approximation the form of this wanted mode:
the form, for example, of the surface of deflexion corresponding with uniform lateral
pressure is likely to approximate more nearly to one of the higher modes, and in that
event can lead to the required result only by ‘regression’ (Duncan & Lindsay 1939,
§5°1).

Regression in fact becomes an advantageous circumstance on which we would like
to count; but we know that it does not necessarily occur,—an assumption sufficiently
close to one of the higher modes may ‘tune up’ to that mode as we apply the standard
relaxation procedure. A like difficulty is to be anticipated in a relaxation treatment of
elastically supported struts: to meet it a technique is now suggested which dispenses,
in its early stages, with ‘liquidation’ performed with the aid of an exact relaxation
pattern, such as was employed in Part VII A of this series.

¢ Optimal synthesis’

23. The technique consists in a systematic ‘blending’ of two type solutions, eack
of which satisfies the imposed boundary conditions, so as to make A as small as possible. One of
these type solutions is a starting assumption (w,, say), the other (w,) is derived from it
by a standardized procedure.

* Examples will be found in Timoshenko 1936, Chap. viL.
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First, with a use of ‘Rayleigh’s principle’ we deduce a value of A (4, say) by sub-
stituting w, for w in (27) ; then we calculate values of the ‘residual forces’ at nodal points
of a chosen net, substituting for this purpose the appropriate finite-difference approxi-
mations to dw/dx’, etc., in the formula

d (0w, 0 ow\ 0 (0w 0 (0w
. /4 ’ ’ )
P Vutilao(Poe) o (Pag)=ae (S o) 3 (S50 @
with 4, w, substituted for A, w.

Secondly, we make a rough estimate (either by guessing, or by a use of the standard
‘biharmonic relaxation pattern’) of w, as determined by

V,4wB :F, (30)

making exact allowance for the boundary conditions. Clearly, wy will differ widely from w,,
in that it comes from transverse forces having opposite senses in different parts of the
plate: therefore the combination of w, and wy which is represented by

w=w,+owy («variable) (31)

will in general alter widely as « is increased from 0 to co.
Now on substituting from (31) for w in (27) we obtain an expression for A of the form

a+2ba+ca? Num. (say)
dro2fat+ga? Den. ¥)s

A= (32)

and this can be used to find values of a for which 2 is stationary. The condition is
0/1 Num )(Num.) d(Den.)
-1 s
0 = $(Den.) P 2[ — (Num.) P :I

= (bd—fa)+ (cd—ga) a+ (cf—Dbg) a?, (33)
—a quadratic in « of which the roots «,, , are real provided that
(cd—ga)?>4(bd—fa) (cf—bg),

and in that event can be solved without difficulty. When it is satisfied, then according

to (32)
a+bx b-tcx

dt+fo f+ga’

A= (34)
as is easily verified. Giving to a the values a;, a, in turn, we can calculate the stationary
values of A; and then, if the lower of these lies below both of a/d and ¢/g, we can substitute
the corresponding value of « in (31) to obtain a closer approximation to the wanted w.

High accuracy is not necessary in the solution of (33), but the consequent A and w
should be computed from (34) and (31) to several figures, since they now become
starting assumptions to replace 1, and w, in a repetition of the whole cycle of operations
which has been described. Starting from a mode without nodal lines, and continuing the


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

A \
I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

480 R. V. SOUTHWELL AND OTHERS ON RELAXATION

process until no appreciable change of mode results, we shall be directed to a form for
the gravest mode which has at all events the correct number of nodal lines; and when the
smallness of « indicates that A, approximates to the gravest value of A, we may revert
to methods used previously.

24. The values of a, b, ¢, d, f, g, in (32)—(84), are given by
a= ffwA NV, dx'dy’
b— f w, . V'w, dx'dy’ — f wy. V'w, dx'dy,

Cc= fwB. V4w, dx'dy’,

| (35)
B (OWN? | (Owy)\? ,3wA0wA 1
4= [JlnGe) + o) -2 G e
, (?wA(?wB , Jw, dwy dw, dwy | Jwydw, A
= [ B an 0 oS (6 o )|
(0w, dwy ,Qwgdwg) , , .,
&= H{P( )+P(3y) 2 3y}dd )

They must be computed on the basis of finite-difference approximations to the operators
which they involve.
In relation to a, b, ¢ we have the approx1mat10n

a (V"*w)omz4 (wr) +224 (wa)—8§ (w,) +20w, (36)
which is the basis of the ‘biharmonic liquidation pattern’ used in Part VITA (Fox &
Southwell 1941) §14. > (wy), z (w,), (wl) stand for the sum of the w-values at the

4

four symmetrical points typlfied by I, a, 1, respectively, in figure 8. Hence we have
the corresponding approximation

f f WV di' dy’ ~a? S [w . VViw] ~ 6_115 s [wo{ S (w) +23 (0,)—8S (w0,) + 20w0}],

n n 4 4 4
when the summation Y extends to every nodal point in the plate, typified by 0 in
figure 8. This yields the expression

a?.a = 202 (w}) — 162 (wyw,) + 42 (wyw,) + 22 (wywy), (37)
when w is identified with w,. In (37)

w,w, typifies a product for two ends of the same ‘link’ (figure 8),
wyw, typifies a product for two ‘diagonally adjacent’ points,
w,wy typifies a product for two nodes separated by two adjacent and collinear ‘links’.
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To obtain the corresponding approximation to ¢ we have only to identify w, in (37),
with wy; and for b we have

a?.b = 20X (w,w,) — 8 (wo W, +wow;) +2Z(w, w,+w,w,) +Z(wy Wy +wowy), (38)

in which w and w are to be identified with w, and wj,.

Ficure 8

25. For f the expression (35) may be replaced by

LOowg\ 0 [ 0wg\ 0 (o Owg\ 9 (o 0wg\) .,
Hw“‘{ax (P )+3y (Py 0y) ax’ (S f?y) dy’ (S ox' )}dx 4

awB , awB /awB ’ 7
_” { Py A= ik ay}dxdy, (39)

simply, because (since P;, P,, $" are self-equilibrating in the plane of the plate)

0P, 05 _ 9P, 0S

W ay = ay Taw =°

o
A similar simplification for d is obtained when wy, is replaced by w, in (39), and for g
when w, is replaced by wp.

The integrations may be replaced by summations as in § 24, and for the differentials
we may substitute the finite-difference approximations

0w
a2(——,) AW, 4wy — 2w,
axz) T s 0
of %W
a (W)0~w2+w4——2w0, > (cf. figure 8) (40)
0w (
4a (0 3y ) —w,+w,—w,,
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482 R. V. SOUTHWELL AND OTHERS ON RELAXATION

which were used in Part VIIA (Fox & Southwell 1945) §16. For the calculation of
residuals we have only to substitute the finite-difference approximations (36) and (40) in

w 0w 0w
— — 14 r U r Y r v
F V w+/{{ x-ax,2+ y-aylz 28 axlay/}
—which a like argument shows to be equivalent to (29),—then deduce ‘relaxation
patterns’ in the manner of Parts I1T and VIIA.

(41)

Example 1. Rectangular plate sustaining thrust on one pair of edges

26. To test these methods we applied them, first, to an example known to be soluble.
A rectangular plate (figure 9) sustains thrust uniformly distributed along its shorter
sides, which are clamped, while its longer sides are simply supported and are not
subjected to edge traction. Timoshenko (1936, § 68 and table 38) gives values computed
by Schleicher (1931) of a quantity £ which can be identified with A/7? in our notation
(L in (28) being identified with & in figure 9). For [/b = 3 the tabulated value of £ is
4-41,i.e. A = 43-5, and the mode is characterized by two nodal lines.

| [=3b

-

simply supported

clamped clamped

T

LT

simply supported

Frcure 9. Example 1.

Proceeding in accordance with §23, on a net of fairly coarse mesh (a = b/4), we
started with an assumed mode having no nodal lines in the interior of the rectangle, and deduced
a corresponding value of A by a use of Rayleigh’s principle; then, for this value (1, in
table 5) we computed residual forces correctly to three significant figures, and ‘relaxed’
to liquidate them roughly with the use of the standard ‘biharmonic pattern’. The dis-
placements added in this relaxation process were adopted as a second type solution
(wg, §23), and by ‘optimal synthesis’ an improved mode and an improved value of A
(A, 1n table 5) were deduced. Two repetitions of this cycle of operations led to the values
denoted by 4, 4, in table 5, and showed the fundamental mode to be almost certainly
characterized by two nodal lines. Thereafter ‘point relaxation’ was employed for further
liquidation of the residual forces, with frequent use of Rayleigh’s principle for estima-
tion of A, and with ‘relaxation patterns’ appropriate to the value of A reached in each
particular stage. Towards the finish (i.e. as A approached a stationary value) this point
relaxation became very effective, as is shown by the imposition of limits

40-341 <A<<40-8832
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and 40-520 <A <<40-8768

in the last two stages.

TABLE 5
stage A (=Timoshenko’s 7%k)
initial assumption A, =845,
after st synthesis A, =46-2,
after 2nd synthesis Ag=42-4,
after 3rd synthesis A, =412
after point relaxation Ay =40-8,

27. All of the foregoing section relates to work done (by J. R. G. and F. 8. S.) on a
coarse net having (when allowance is made for the double symmetry of the problem)
12 points at which ‘residuals’ had to be liquidated. The solution for this net was made
the starting assumption for a second net in which the mesh size was halved (i.e. with
48 ‘balance points’), intermediate values being derived by graphical interpolation.
Relatively little adjustment was called for, so point relaxation could be employed from
the first. The modal contours (figure 10) were altered hardly at all.

Ficure 10. Fine line contours derived from coarse net (a=05/4);
bold line contours derived from fine net (a=06/8).

On the other hand, A as computed from finite-difference approximations in the
manner of § 25 was found to alter sensibly (from 40-88 to 44:0624) at the first advance
to the finer net, and subsequent point relaxation indicated that its stationary value for
this finer net (computed as before) was very little less than 42-82. Thus the computed
mode appeared to be more trustworthy than the computed A, which in one advance
had risen from 40-88 to 42-82, and thus seemed to be approaching Schleicher’s value
43-5 (§ 26)_from below. These conclusions are in contrast with the usual result of applying
Rayleigh’s principle, in which a close estimate of the gravest A, but an overestimate,
corresponds with even a rough approximation to the mode. It seemed certain that they
must be due to errors inherent in the finite-difference formulae, and further computa-
tions were made to test this conjecture.

Vor. 239. A 59
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484 R. V. SOUTHWELL AND OTHERS ON RELAXATION

28. Bickley has given (1941, 1939) formulae for approximate differentiation and
integration of functions tabulated for equal intervals of the argument. The former were
employed (by F. S. S.) to obtain closer approximations, at every nodal point, of
0%w/0x? and d%w/dy?, and thence of the integrands in (27) ;* then, the latter were employed
to effect the double integration. Computations were made in this manner for both
sizes of net, ‘four-strip’ formulae being employed in both instances for the differentia-
tions, and ‘four-strip’ and ‘six-strip’ formulae, respectively, for integration on the
coarser and on the finer net.

The results (table 6) are highly satisfactory. The finer net still yields a higher value
for A than the coarser, thus confirming the conjectured explanation; but this value
agrees within one part in 400, both with the coarse-net value and with Schleicher’s. It thus
appears that critical loadings can be calculated with amply sufficient accuracy, and
without proceeding to very fine nets, from Bickley’s formulae applied on the basis of Ray-
leigh’s principle. The mode too can be closely estimated, and the supplementary
calculations are not necessary when (as will usually be the fact) an estimate of A can be
tolerated which is Zoo low by some 6 %.

Example 2. Rectangular strip sustaining bending moments accompanied by shear

29. Our second example (figure 11) relates to a stress system of considerably greater
complexity, generally representative of the stresses induced by bending moment
combined with shear force in the web of a deep plate girder. It is shown (e.g. in South-
well 1936, §§413-6) that the biharmonic stress function

w
X = i 00— ) — (29" — 5+ 4y — )
entails the stress system
X, = g 32 (20— d) — g+ 6dy> 2y + 1),

w 3w
Y, = gpp¥*(2y—3d), X, = rmxy(d—y),

v

which, when the axes are as shown in figure 11, satisfies edge
conditions as under:

(42)

X, = 0, when x = 0, in the range 0<<y <Jd,
X,=Y,=0,wheny = 0, in the range 0<<x</,

w

—55 when y = d, in the range 0<<x </,

X,=0,7, =

d d '
fXxdy :f yX.dy = 0, when x = 0.
0 0

* The first term (w.V"*w) can be replaced by (V'2w)2. Cf. (25)
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TABLE 6. CRITICAL LOADING FOR RECTANGULAR PLATE UNDER EDGE THRUST

A by A by Timoshenko’s
finite-difference finite-difference k (=A/n?) from
formulae uncorrected formulae corrected corrected formulae
coarse net 40-88 43-30 4-39
fine net 42-82 43-42 4-40
Schleicher — : — 4-41

In the notation of § 20 we have
P,P,S=2kx(—X,—Y,X,),
therefore in the notation of § 21 we may write

P, P S = %’E < (—X, ~¥, X,), > (43)

A A

ie. P, = —[3%(2y'—1) 4y + 65—y +4],
P;:_y/Z(le__g)’ S,= Gx/yr(l__y/)’

if L and P, in (28), are now identified with 4 and w.

OF

30. Contours in figure 11 (computed by F. S. S.) exhibit the relative intensities, in
different parts of the plate, of the negative (i.e. compressive) principal stress. They

uniformly distributed load w

T T T T T T T T T T T T T T T T /A

S5d

8Ex s

ol x //‘/ 70

50
60

5 ) 5 munssw;ssosswumay
_

Ficure 11. Load-system in example 2.

) §

S

(Contours show the principal stress (compressive) as a multiple of w/2k).

suggest that transverse deflexion, or ‘waving’, since it is promoted by compressive but
resisted by tensile stresses in the plane of the plate, will occur first, and will have its
maximum amplitude, near the bottom right-hand corner. Relatively to this region
the other parts of the plate will be elastically stable, so will act in the capacity of con-
straints. In the left-hand part of the plate, and in the (tensioned) top half, the waving
will have small amplitude. ,

Thus the main features of the required solution can be anticipated. But because our
purpose was to examine whether the method of ‘optimal synthesis’ can be trusted to
yield the gravest mode, no attempt was made to save labour, in a first approach, by

59-2
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486 R. V. SOUTHWELL AND OTHERS ON RELAXATION

‘intelligent guessing’. Instead, we made at starting an assumption known to be very
wide of the mark, and took for w, (§ 23) a deflexion one-signed throughout,—namely,

(1 —cos2my’) (lmcos?x’) (44)
(with origin as in figure 11).

The mesh size (a) of the first net was made 1/4. So coarse a net cannot be expected
to reveal the finer detail of the wanted mode, but this served its purpose in bringing A
to a nearly stationary value, as is shown by the following sequence of results at different
stages: A from initial assumption, 66-24; after 1st, 2nd, ..., 11th synthesis, 44-73;, 18-33,
9:95,, 8:27,, 6-22,, 4-91,, 4-56, 4-46,, 4-35,, 4-345;, 4-294,; after 12th synthesis followed
by some point relaxation, 4-288. Widely different type solutions were obtained in the
earlier stages by the standard procedure of § 23.

31. Since 1 was evidently approaching a stationary value, complete liquidation of
residuals on this coarse net was not thought to be worth while: instead, results were
transferred to a net of finer mesh (¢ = 1/8), with the consequence that (cf. §27) A as
computed in the manner of §23 rose at once from 4-288 to 7-904. As was expected
(cf. §30), the deflexions near the bottom right-hand corner of the rectangle (x' = 5,
y’ = 1) were found to be very large in comparison with those in other regions, and in
consequence ‘optimal synthesis’ could be employed again—this time with type
solutions relating to comparatively small areas.

Our subsequent work on this example is to be regarded rather as an extreme test of
technique than as directed at any practical objective. When the destabilizing stresses
are as localized as they are shown to be by figure 11, 1 is determined mainly by their
intensities in a restricted region, outside of which the elastic (stabilizing) stresses pre-
dominate so that waving is due to diffusion of effects initiated elsewhere. If (as in
practice) we had been concerned only to determine the critical loading, most of our
work done on the finer net would have been unnecessary, as having negligible effect on A.
Only because it was desired to define the mode with close accuracy, time was spent in
point liquidation involving a large number of different ‘relaxation patterns’.

32. Example 2 was investigated by L. F., with assistance by J. R. G. in the con-
cluding stages of relaxation on the finer net. The highly satisfactory results of the more
exact solutions described in § 28 suggested the desirability of like calculations in this
more intricate case, and accordingly, after point liquidation had been carried as far
as was deemed practicable, the necessary computations were put in hand. But reasons
became apparent for believing that high accuracy must not be expected of Bickley’s
differentiation formulae when the deflexion is as oscillatory, and the datum points as
widely separated, as they are in figure 12. This difficulty is receiving attention: mean-
while we do not attempt to correct for finite mesh size («) the value of A which we have
obtained from our customary approximations (§25) applied to the accepted mode of
distortion. That value (5-949) we believe to be correct within about 1 %,.
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Figure 12 exhibits the accepted mode by means of contours, and shows that the
anticipations of § 30 have been realized. Here, in the nature of the case, less accuracy
can be claimed, but less is needed. The plotted contours extend to less than half of the
total area of the plate: this is because in other parts the waving is so small (cf. § 30) that
the total displacements lie within the margin of error of our computations; but for that
very reason they are unimportant, as having negligible influence on A.

2z 2 2 4 " 2 33 ) 37 27 5 6
' /J N\ «“ 92| 75| “2 49 8| 0 sa1—-—
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o /
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Ficure 12. Values and contours of w. Absolute magnitude of distortion is indeterminate.

Regarded simply as an exercise in computational technique, this is considered to be
the most exacting test of relaxation methods that has yet been made.
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